VOLTAGE DELAY AND COMPLEX IMPEDANCE CHARACTERISTICS OF A HIGH-RATE LITHIUM/SILVER-VANADIUM OXIDE MULTIPLATE BATTERY (EXTENDED ABSTRACT)

G. M. BERGMAN and E.S. TAKEUCHI*
Research \& Development, Wilson Greatbatch Ltd., 10000 Wehrle Drive, Clarence, NY 14031 (U.S.A.)

A high-rate, multiplate lithium/organic electrolyte/silver-vanadium oxide system has been developed to power implantable cardiac defibrillators [1]. Room temperature voltage delay and complex impedance analyses have been completed on five rectangular cells (dimensions: $13.5 \mathrm{~mm} \times 52 \mathrm{~mm} \times$ 21 mm ; external volume: $14.6 \mathrm{~cm}^{3}$; theoretical capacity: 3.0 A h) at different depths of discharge.

After manufacture, 2% of each cell's theoretical capacity was extracted and the cells were allowed to rest for one month. A $2.0 \mathrm{~A}, 10 \mathrm{~s}$ pulse was then applied to record voltage delay. Figure 1 presents an example of the recorded voltage response. Initial open circuit voltages ranged from 3240 to 3260 mV ; initial 2.0 A voltages ranged from 2355 to 2410 mV ; initial 2.0 A voltage drops ranged from 850 to 905 mV ; final 2.0 A voltages ranged from 2500 to 2550 mV .

Fig. 1. Voltage delay during a 10 s 2.0 A pulse.

[^0]
\[

$$
\begin{aligned}
Z_{\mathrm{TOT}} & =Z_{\mathrm{R}_{1}}+Z_{\mathrm{L}}+Z_{2}+Z_{3} \\
& =\text { Real } Z_{\mathrm{TOT}}+(J) \text { Imag } Z_{\mathrm{TOT}}
\end{aligned}
$$
\]

Fig. 2. Equivalent circuit model for complex impedance response:
$Z_{\mathbf{R}_{1}}=R_{1}$
$Z_{\mathrm{L}}=J \omega L$
$Z_{2}=\left(\left(R_{2}\right)^{-1}+(J \omega)^{\eta_{2}} C_{2}\right)^{-1}$
$Z_{3}=\left(\left(R_{3}+Z_{w}\right)^{-1}+(J \omega)^{n_{3}} C_{3}\right)^{-1}$
where
$J=\sqrt{ }-1$
$\omega=2 \pi F \quad=$ Angular frequency
$R_{1}, R_{2}, R_{3}=$ Resistive components (Ω)
$L \quad=$ Inductive component (H)
$C_{1}, C_{2}, C_{3}=$ Capacitive components (F)
$Z_{\mathrm{w}} \quad=$ Warburg impedance contribution $=K(1-J) / \sqrt{ } \omega$
$K \quad=$ Warburg coefficient
$\eta_{2}, \eta_{3}=1-\theta_{2,3} / 90.0$
$\theta_{2}, \theta_{3}=$ Angles of deviation from ideal symmetry about the $-\operatorname{lmag} Z=0$ axis (degrees).

Fig. 3. Complex impedance results before pulse discharge (av. of 4 cells). $R_{1}=0.09 \Omega$, $R_{2}=0.94 \Omega, R_{3}=0.09 \Omega ; K=0.099, L=0.0212 \mu \mathrm{H}, C_{2}=0.0013 \mathrm{~F}, C_{3}=0.7814 \mathrm{~F}$.

During the one month storage period, complex impedance responses were obtained on four cells over the frequency range 0.01-100000 Hertz using a PAR Model 368 a.c. impedance measurement system. Results were then integrated with an equivalent circuit model (Fig. 2) developed from the work of Mauger et al. [2], and circuit parameters were obtained using the relationships shown below.

Figure 3 presents the Nyquist and Bode graphs for the average of the modeled complex impedance responses along with the resulting circuit parameters.

The test cells then went through a regime of partial discharge (using $2.0 \mathrm{~A}, 10 \mathrm{~s}$ pulses with four pulses per train, 15 s of rest between pulses, and 30 min of rest between pulse trains), storage, complex impedance and voltage delay testing until they reached end-of-life (1.7 V under the 2.0 A pulse load). Voltage delay and complex impedance analyses were completed at each depth of discharge, and trends in the initial 2.0 A voltages and the complex impedance equivalent circuit parameters were noted as functions of depth of discharge.

References

1 (a) C. C. Liang, M. E. Bolster and R. M. Murphy, U.S. Pats. 4,310,609 and 4,391,729; (b) C. F. Holmes, P. Keister and E. Takeuchi, Prog. Batteries Solar Cells, 6 (1987) 64; (c) P. Keister and C. F. Holmes, Clinical progress in electrophysiology and pacing, Cardiostim '86, Monaco, Futura Publ. Co., Mount Kisco, NY, 1986, Abstr. no. 78; (d) E. S. Takeuchi, B. C. Muffoletto, J. M. Greenwood and C. F. Holmes, Cardiac Pacing and Electrophysiology, Keterpress Enterprises, Jerusalem, Israel, 1987, p. 445.
2 R. Mauger, M. Elkordi, J. C. Pariaud, F. Dalard and D. Deroo, J. Appl. Electrochem., 14 (1984) 293-303.

[^0]: *Author to whom correspondence should be addressed.

